Настоящая книга посвящена регулярному решению известной проблемы Минковского о существовании замкнутой выпуклой гиперповерхности с заданной гауссовой кривизной, а также ряду вопросов геометрии и теории дифференциальных уравнений с частными производными, примыкающих к этой проблеме. В частности, здесь рассматривается общая проблема существования замкнутой выпуклой гиперповерхности с заданной функцией кривизны любого порядка. Изучаются обобщенные решения многомерного аналога уравнения Монжа Ампера, при известных условиях доказывается их регулярность, решается задача Дирихле. Рассматриваются несобственные выпуклые аффинные гиперсферы и в случае их полноты доказывается, что все они являются эллиптическими параболоидами. Книга может быть рекомендована студентам, аспирантам и научным работникам в области геометрии и теории дифференциальных уравнений.
Погорелов, Алексей Васильевич.
Многомерная проблема Минковского / А. В. Погорелов. – Изд. 2-е, стер.Библиогр.: с. 94-95 (19 назв.).